Leetcode 312. Burst Balloons
Problem
You are given n balloons, indexed from 0 to n - 1. Each balloon is painted with a number on it represented by an array nums. You are asked to burst all the balloons.
If you burst the ith balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it.
Return the maximum coins you can collect by bursting the balloons wisely.
Algorithm
Dynamic Programming (DP). Let dp[s][t] represent the maximum number of coins that can be obtained by bursting all the balloons between index s and t.
d
p
[
s
]
[
t
]
=
m
a
x
(
d
p
[
s
]
[
k
]
+
d
p
[
k
]
[
t
]
+
n
u
m
s
[
s
]
∗
n
u
m
s
[
k
]
∗
n
u
m
s
[
t
]
)
dp[s][t] = max(dp[s][k] + dp[k][t] + nums[s] * nums[k] * nums[t])
dp[s][t]=max(dp[s][k]+dp[k][t]+nums[s]∗nums[k]∗nums[t])
For s < k < t s < k < t s<k<t.
Code
class Solution:
def maxCoins(self, nums: List[int]) -> int:
nums = [1] + nums + [1]
nlen = len(nums)
dp = [[0] * nlen for _ in range(nlen)]
for l in range(2, nlen):
for s in range(nlen - l):
t = s + l
for k in range(s+1, t):
if dp[s][t] < dp[s][k] + dp[k][t] + nums[s] * nums[k] * nums[t]:
dp[s][t] = dp[s][k] + dp[k][t] + nums[s] * nums[k] * nums[t]
return dp[0][nlen - 1]
原文地址:https://blog.csdn.net/mobius_strip/article/details/146445289
免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!